1

This section deals with a practical and, as it turns out, reasonably efficient implementation of the
so-called second recursion theorems of Kleene, [9], and Rogers, [11]. For a much more thorough but

Experiments with Implementations of two Theoretical
Constructions

Torben Amtoft Hansen
Thomas Nikolajsen

Jesper Larsson Traff
Neil D. Jones

DIKU, Department of Computer Science, University of Copenhagen.
Universitetsparken 1, DK-2100 Copenhagen (), Denmark
E-mail adresses: amtoft@Qdiku.dk, thomas@Qdiku.dk, traff@diku.dk, neil@diku.dk

Abstract

This paper reports two experiments with implementations of constructions from theoretical
computer science. The first one deals with Kleene’s and Rogers’ second recursion theorems
and the second is an implementation of Cook’s linear time simulation of two way deterministic
pushdown automata (2DPDAs). Both experiments involve the treatment of programs as data
objects and their execution by means of interpreters.

For our implementations we have been using a small LISP-like language called Mixwell,
originally devised for the partial evaluator MIX used in the second experiment. LISP-like
languages are especially suitable since programs are data (S-expressions) so the tedious coding
of programs as Goédel numbers so familiar from recursive function theory is completely avoided.

We programmed the constructions in the standard proofs of Kleene’s and Rogers’ recursion
theorems and found (as expected) the programs so constructed to be far too inefficient for
practical use. We then designed and implemented a new programming language called Reflect
in which Kleene and Rogers “fixed-point” programs can be expressed elegantly and much more
efficiently. We have programmed some examples in Reflect in an as yet incomplete attempt to
find out for which sort of problems the second recursion theorems are useful program generating
tools.

The second experiment concerns an automaton that can solve many non-trivial pattern
matching problems. Cook [4] has shown that any 2DPDA can be simulated in linear time by a
clever memoization technique. We wrote a simple interpreter to execute 2DPDA programs and
an interpreter using Cook’s algorithm, and we observed that the latter was indeed much faster
on certain language recognition problems. Both have, however, a high computational overhead,
since they in effect work by interpretation rather than compilation. In order to alleviate this
we applied the principle of partial evaluation, see [5], to specialize each of the two interpreters
to fixed 2DPDAs. The result was a substantial speedup.

The Second Recursion Theorems

also more theoretical treatment, see these or any other good textbook on the subject, e.g. [10].

We give a brief review of the fundamentals, then discuss our implementation of the theorem(s)
and report a few experiments devised to demonstrate the adequacy of the implementation and reveal

some of the power hidden in the recursion theorems.



Let D be a set of texts, programs as well as data objects, closed under formation of pairs. That
is, for elements z,y € D we can form their pair (z,y), which is also in D, and each pair in D
can be uniquely decomposed into its constituents. Tuples can be formed by repeated pairing: we
adopt the convention that (xy,za,...,x,) is just (z1, (ze, (..., 2,)...)). A good example of such a
set is the set of LISP S-expressions. A semantic function, ¢ : D — (D — D) that takes programs
p € D and maps them into computable partial functions ¢(p) : D — D is called a programming
language. In accordance with standard notation in recursion theory, ¢(p) is written ¢,; the n-ary
function ¢} (71, ..., x,) is defined to be A(w1, ..., z,).,((x1, ..., 2,)). The superscript will generally
be omitted.

The following definition, originating from [11], captures properties sufficient for a development
of (most of) the theory of computability independent of any particular model of computation.

Definition 1.1 The programming language ¢ is said to be an acceptable programming system if it
has the following properties:

1. Completeness property: for any effectively computable function, ¥ : D — D there exists a
program p € D such that @, = .

2. Universal function property: there is a universal function program up € D such that for any
program p € D, ©u,(p, x) = @,(x) for all x € D.

3. s-m-n function property: for any natural numbers m,n there exists a program sp;* € D such
that for any program p € D and any input (z1,...,Tm, Y1, .-, Yn) € D

m—+n

O (X Ty Y1y Yn) = SOZ:;H(p,th,zm)(yl’ ey Yn)

gpg;);;l : D™ — D s called the s-m-n function, written s™.

The properties listed above actually correspond to quite familar programming concepts. The
completeness property states that the language is as strong as any other computing formalism.
The universal function property amounts to the existence of a self- or meta-circular interpreter of
the language, whereas the s-m-n function property ensures the possibility of partial evaluation: a
program p € D can, when given some of its input, z € D be specialised to a residual program,
p' = si(p,x) which when given the remaining input, y, yields the same result as p applied to all
of the input, ¢,(z,y) = Psl(pa) (y). The function s} is represented by a program in the language,
sp; € D, ie. s} = Pop!- This concept seems to become increasingly more important, since it has
been shown that for instance compilation is a special case of partial evaluation; exploiting the power
of the seemingly innocent s-m-n property, however, depends on the existence of non-trivial partial
evaluators. Such a program is used in the next section. The topic is investigated much further in
[7], see also [5]. One observes that by letting programs and data have the same form, the theory can
be developed without the trick of Godel numbering. This is a substantial advantage.

The LISP-like language Mixwell, in which programs and data are S-expressions, has been the
basis for the implementations. A concrete Mixwell program corresponds to a system of recursive
equations and the language is easily (in [2]) proven to have all three of the properties above:

Lemma 1.2 Mixwell is an acceptable programming system.

1.1 The theorems

We are now in position to state and sketch the proofs of the second recursion theorems.

Theorem 1.3 (The second recursion theorem, Kleene’s version (1938)) For any program
p € D there is a program e € D such that py(e,z) = p.(x). We call such an e a Kleene fixed-
point for p.



ProoOF: By the s-m-n property there is an effectively computable function s : D — D such that
for any program, p € D

sop(y, T) = Sas(p,y)<x)
namely s = si. Now, it is evidently possible to construct a program ¢ € D such that

Spq(y’ T) = @p(s(y: y), )
Let e be the program s(q,q). Then we have

pp(e, ) = 0p(5(q,9), ) = 4(q, ) = Ps(g.)(T) = pe(T)

Theorem 1.4 (The second recursion theorem, Rogers’ version (1967)) Any computable func-
tion, f, taking programs as input (a program transformation) has a fized-point program, that is a
program n such that the function computed by n is the same as that computed by the transformed
program. f(n). Formally, there is an n € D such that

() = i (T)
whenever f(n) is defined. For a program p with ¢, = f, this n is called a Rogers fixed-point for p.

The direct proof of Rogers’ version of the recursion theorem is a bit more involved than that of
Kleene’s, see [11]. Due to the following propositions, the two apparently different theorems are of
equal power in the sense that given the ability to find Kleene fixed-points Rogers fixed-points can be
found as well and vice versa. By the second recursion theorem is therefore meant the version most
convenient for the purpose at hand.

Proposition 1.5 Theorem 1.4 and the s-m-n property implies theorem 1.35.
Proposition 1.6 Theorem 1.3 together with the universal function property implies theorem 1.4.

PROOF: Let f be any program transformation with f = ¢y,. Due to the universal function
property we can define a program gp, such that

Pgp(Ds T) = Pup(Psp(p), ) = @wf'p(p)@) = 95 ()

when f(p) is defined. By theorem 1.3 the program gp has a fixed-point, that is, there is an e with
Soe(x> = gng(e,:L‘). Now

pe(r) = pgp(e, 2) = @) (x)
So e is a Rogers fixed-point for the transformation f. O

In the proofs of theorem 1.3 and proposition 1.6 fixed-points are obtained in a uniform manner.
The second recursion theorem can therefore be generalized a bit:

Proposition 1.7 There are total computable functions, kfix,rfix : D — D, such that for any pro-
gram p € D, kfix(p), rfix(p) are Kleene respectively Rogers fized-points for p.

We leave out a detailed discussion of the relation between the second recursion theorem and
the presumably better known first recursion theorem. The first recursion theorem yields least fixed-
points for extensional program transformations (computable functions, f, satisfying ¢rm)y = @fm)
whenever ¢, = ¢, ), whereas the second recursion theorem holds for non-extensional cases as well.
A fixed-point obtained by the second recursion theorem is not necessarily least. However Rogers,
[11], has shown that from an extensional program transformation, f, a transformation, g, can be
constructed such that ¢,y = @) and such that the Rogers fixed-point for g is least. It seems fair
to say then that the second recursion theorem is strictly more powerful than the first. This fact has
stimulated the interest in “fixed-point programming”.



