
CS 486: Applied Logic Lecture 22, April 15, 2003

22 Arithmetic Representability

In the previous lectures we have introduced axiomatizations of various fragments of mathe-
matics, including integer arithmetic. We have given two formalizations – the axioms of an
inductively ordered integral domain and the Peano axioms. In the process the number of
axioms has grown tremendously. If we were to rely just on the pure tableau calculus for
first-order logic, we would hardly be able to prove anything from these axioms in a decent
amount of time. The size of the proofs will just be too big for that.

From a practical perspective, therefore, it makes little sense to continue the path of
adding axioms to first-order logic. Instead, we have to turn these axioms into proof rules
that we can apply ad lib and even extend the proof system by decision procedures for certain
fragments of mathematics, which are guaranteed to be correct but use extra-logical features
to construct a proof. Doing so will bring us to a formalism that we call Proof Refinement
Logic, and in particular to a version of it that we call λ-PRL, which enables us to reason
about programs, integers and lists of integers. There is also a successor of λ-PRL that is
based on a much richer formal logic called type theory, but introducing that logic and its
applications is a course by itself.

However, before we do so, let us explore the theoretical consequences of the axiomatiza-
tions we have so far. The Peano axioms appear so utterly simple – can we express anything
interesting in them? They include substitution and induction as axiom schemes , which
potentially means an infinite number of axioms – how far would we get if we require the
number of axioms to be truly finite? These two questions will lead us to the investigation
of computable functions, issues of decidability, and eventually to what is known as Gödel’s
incompleteness theorem.

22.1 Representability of Functions in a Formal Theory

The theory of computable functions has been the subject of mathematical studies since
the early 1930’s. A variety of formal models has been developed, such as the λ-calculus
(functional programming), Turing machines (imperative programming), recursive functions ,
and a huge number of programming languages. All these models have turned out to be
equivalent. None is stronger than the others, so we can be quite sure that they do represent
the class of all computable functions completely – if a function is computable, then it can
be represented in each of these formalisms (this became known as Church’s thesis). Most
theoretical models of computability focus on functions on natural numbers, so we will only
consider the domain N from now on.

In the following we will show that the Peano axioms are strong enough to express all
computable functions as well. For this purpose, of course, we have to define what it means
for a logical formula to represent a function. Let us keep in mind that the language of Peano
Arithmetic includes only the language of first-order logic (predicates, variables, parameters,
logical connectives, and quantifiers), the designated parameters 0 and 1, the designated

87

equality predicate =, and the designated function symbols + and *. So, while the numbers 0
and 1 have a direct representation by a symbol of Peano Arithmetic, all the other numbers
have to be represented by terms. The number 2 is represented by 0+1+1, 3 by 0+1+1+1, and
so on.3 In the following discourse we need to be able to denote the term that represents an
arbitrary natural number n. We choose the notation n for this purpose and define

n ≡ 0+1+1+ ... 1︸ ︷︷ ︸
n times

Note that n is a term of the object language of Peano Arithmetic while n itself is a meta-level
symbol representing a natural number.

How can we represent computable functions by logical formulas? Recall that in the
axiomatization of integers as inductively ordered integral domain we introduced function
symbols as more conventional notation for predicates that satisfied the functionality axiom.
A term of the form f(x)=y is only a different way of writing the predicate Rf(x,y). Does
that mean that the predicate Rf is a representation of the function f?

Not exactly. We have to keep in mind that a (computable) function is a semantical
construct that maps natural numbers onto natural numbers, while the symbol f is still
an object of the formal language (an abbreviation for an object level term, to be precise).
However, we can relate a computational function to the semantical meaning of a predicate
Rf by saying that f(x) = y must hold if the corresponding formula is valid . The following
definition makes this concept precise.

A formal theory T is a set of formulas over some formal language. A formula X is valid
in T (Notation |=T X) if it is true in every model of T . Often a theory T is defined by
a set of axioms and the elements of T , called theorems , are the logical consequences of
these axioms. Occasionally people identify the theory with this set of axioms, but this is
not entirely accurate. In the following we will focus on theories whose language includes a
representation of natural numbers.

Definition: An n-ary function f : N→N is called representable in a theory T if there is an
(n+1)-ary predicate Rf in the formal language of T , such that for all x1, .., xn, y ∈N

• f(x1, .., xn)=y implies |=T Rf(x1,..,xn,y)

• f(x1, .., xn)6=y implies |=T ∼Rf(x1,..,xn,y)

In a weak sense, representability in a theory can be viewed as some form of logic pro-
gramming. Note that the requirements on the predicate Rf representing a function f are
quite strict. It is not sufficient that Rf(x1,..,xn,y) is not valid in T if f(x1, .., xn)6=y.

3It should be noted that 0, 1, 2, 3 etc. are only symbols of the meta-language that we use to denote the
actual natural number. They are not the numbers themselves. However, as it is more convenient to write 0,
1, 2, 3 than “the number zero”, “the number one”, “the number two”, “the number three”, we will use the
conventional numbers as placeholders.

As a result, it becomes more difficult to distinguish between the meta-level symbol that represents a
number, and the symbol of the logical object language that is supposed to express the same. In this text
we use blue typewriter font for object language expressions while the other fonts are reserved for the
meta-language. Such a distinction, however, cannot be made on the blackboard. Note also that math−font
in formulas indicates a placeholder for an arbitrary term or formula.

88

Instead, the negation of this formula must be valid, which means that Rf must be a very
exact representation and that the theory T is capable of expressing that.

Q: What kind of functions can be represented in Peano Arithmetic?

Let us consider a few examples:

• Obviously addition, successor, and multiplication can be represented in Peano arithmetic.

– Addition + is represented by the predicate R+ with R+(x,y,z) ≡ x+y=z.

– The successor function s is represented by the predicate Rs with Rs(x,y) ≡ x+1=y.

– Multiplication ∗ is represented by the predicate R∗ with R∗(x,y,z) ≡ x*y=z.

In all three cases it is obvious that the representation is correct.

• The predecessor function p inverts the successor function on non-zero inputs. That means
hat p(x)=y iff x=0 and y=0 or if x=y+1. Based on this analysis we define the predicate
Rp as Rp(x,y) ≡ (x=0 ∧ y=0) ∨ y+1=x.

What remains to show is that this representation is in fact correct, that is that p(x) = y
implies the validity of Rp(x,y) in Peano Arithmetic and that p(x)6=y implies the validity
of ∼Rp(x,y). Fortunately, we are not required to give a formal proof for the validity
of these formulas, which would be almost impossible. Instead, we can use the axioms
of Peano Arithmetic within a semantical argument that the formulas are valid in every
model of Peano Arithmetic. We proceed by induction over the number x.

1. For x=0 we know p(x)=0. Consider two possibilities for the number y.

If y=0 then p(x)=y and Rp(x,y) = (0=0 ∧ 0=0) ∨ 0+1=0 is valid because of the
reflexivity of equality.

If y 6=0, then p(x)6=y and ∼Rp(x,y) = ∼((0=0 ∧ y=0) ∨ y+1=0) is valid because
y has the form 0+..+1. As a consequence the axiom non-surjective makes both
disjuncts false. Thus their negation becomes true in every model of Peano Arithmetic.

2. Assume the claim holds for x=n. For x=n+1 we know p(x)=n, and x = n+1. Again
we consider two possibilities for the number y.

If y=n then p(x)=y and Rp(x,y) = (n+1=0 ∧ y=0) ∨ n+1=n+1 is valid because
of the reflexivity of equality.

If y 6=n, then p(x)6=y and ∼Rp(x,y) = ∼((n+1=0 ∧ y=0) ∨ y+1=n+1). The left
disjunct in this formula is false because of the axiom non-surjective. Since y 6=n,
y must have a form different from n, which means that the right disjunct either
has the form n+i+1+1=n+1 for some number i if y>n or the form y+1=y+j+1 for
some number j if y<n. Thus by repeatedly applying the axiom injective we get
either i+1=0 or 0=j+1. Because of the axiom non-surjective and the symmetry
of equality, both possibilities evaluate to false, which means that the overall formula
must become true in every model of Peano Arithmetic.

The example of the predecessor function shows that the representation of a function is
often easy to find, while proving the correctness of this representation turns out to be

89

complicated even in simple cases, since we have to investigate the validity of two formulas
for all possible values for the input and output of the function. Usually, this requires an
inductive proof, but fortunately this induction takes place on the meta-level – we are not
required to use the induction axiom. This insight is very important in the study of formal
theories that do not have an induction axiom (like the theory Q that we will discuss in
the next lecture).

Writing that a function f is represented by a predicate Rf , where Rf(x1,..,xn,y) is
defined as some specific formula becomes somewhat tedious on the long run. In the
following we will use a more sloppy notation and say that f is represented by that formula.
For instance, we would simply say that the predecessor function is represented by the
formula (x=0 ∧ y=0) ∨ y+1=x.

• Subtraction on natural numbers is an inverse of addition that floors a zero. That means
hat x−y=z iff x < y and z=0 or if x=y+z. Thus subtraction can be represented by the
formula (x<y ∧ z=0) ∨ y+z=x. For the sake of clarity we used an abbreviation x<y in
this formula, which is defined as x<y ≡ (∃z)((x+z)+1 = y).

22.2 Representing Computable Functions in Peano Arithmetic

We now want to show that Peano Arithmetic is sufficiently strong to represent all computable
functions. We will do this by looking at the so-called µ-recursive functions, a mathematical
model for computability that is closest to formal logic. µ-recursive functions are as expressive
as any other model of computability and thus well-suited for our purpose. They are defined
as follows.

Definition: The class of µ-recursive functions is recursively defined as follows.

• The successor function s :N→N with s(x) = x+1 is µ-recursive.

• The constant function ck :N0→N with ck() = k is µ-recursive for all k ∈N.

• The projection function πn
i
:Nn→N with πn

i
(x1, ..xn) = xi is µ-recursive for all

1≤i≤n ∈N.

• If the functions f1, .., fk :Nn→N and g :Nk→N are recursive then the composition
h = g◦f1, .., fk :Nn→N, defined as
– h(x1, ..xn) = g(f1(x1, ..xn), ..., fk(x1, ..xn))
is µ-recursive.

• If the functions f :Nn→N and g :Nn+2→N are recursive then the primitive recursion
h = pr(f, g) :Nn+1→N, defined as
– h(x1, ..xn, 0) = f(x1, ..xn) and
– h(x1, ..xn, k+1) = g(x1, ..xn, k, h(x1, ..xn, k))
is µ-recursive.

• If f :Nn+1→N is recursive then the minimization h = µf :Nn→N, defined as
– h(x1, ..xn) = min{ z |f(x1, ..xn, z)=0}
is µ-recursive.

90

Note that minimization doesn’t terminate if f(x1, ..xn, y)6=0 for all y. µ-recursive functions
are often called recursive functions , as long as this notion is unambiguous.

Theorem: All µ-recursive functions are representable in Peano Arithmetic.

Proof: We demonstrate how to represent all the constructs mentioned above.

• The successor function can be represented by the formula x+1=y.

• The constant function ck can be represented by the formula y=k.

• The projection function πn
i
can be represented by the formula y=xi, or, to be precise,

by a predicate Rπn
i

with Rπn
i
(x1,..xn,y) ≡ y=xi. It is easy to see that

– πn
i
(x1, ..xn)=xi=y implies that Rπn

i
(x1,..,xn,y) ≡ xi=xi is valid.

– πn
i
(x1, ..xn)=xi 6=y implies that ∼Rπn

i
(x1,..,xn,y) ≡ ∼(y=xi) is valid.

• The composition h = g◦f1, .., fk can be represented by the formula
(∃z1,..zk)(Rf1(x1,..xn,z1) ∧ . . . ∧ Rfk

(x1,..xn,zk) ∧ Rg(z1,..zk,y),
where Rf1 ,. . . , Rfk

, and Rg are the predicates representing f1, .., fk, and g respectively.
The formula encodes the forwarding of results from the fi into g

• The minimization h = µf can be represented by the formula
(∀z)(z≤y ⊃ (∃t)((Rf(x1,..xn,z,t) ∧ t=0) ⇔ z=y)),

where Rf represents f . The formula encodes an unrestriced search, stating that
if y is the first value with f(x1, ..xn, y)=0, which means that for z≤y we know
f(x1, ..xn, z)=0 if and only if z=y. It is not necessary to express the results of
the search for z>y, asince representability only requires an answer for the question
whether a given number y can be the desired result.

• Representing he primitive recursion h = pr(f, g) by a formula in Peano Arithmetic
is the most demanding part of the proof. The language of Peano Arithmetic has
addition, multiplication, conjunction for composition, quantifiers for search, but no
inductive constructor – only an axiom that allows us to prove formulas by induction.

Thus, rather than trying to give a direct representation of primitive recursion in Peano
Arithmetic, we will describe how to express it in terms of addition, multiplication, and
the remaining constructs for building µ-recursive functions. Since all these constructs
are representable in Peano Arithmetic, primitive recursion must be representable a
well.

How can we compute the value of h(x1, ..xn, k) without using primitive recursion? We
first calculate the computations sequence h(x1, ..xn, 0), h(x1, ..xn, 1), . . . h(x1, ..xn, k)
and then select the last element of that sequence. To compute this sequence, we
enumerate all possible sequences y0, y1, . . . , yk and check whether they satisfy the
requirements of primitive recursion, i.e. f(x1, ..xn)=y0 and g(x1, ..xn, i, yi)=yi+1.

Enumerating sequences requires us to represent them by numbers that can be decoded
back into sequences. A straightforward, though computationally not very effective
way is to represent a sequence y0, y1, . . . , yk by a uniquely decodable polynomial.4

4Computationally, the representation of primitive recursion in Peano Arithmetic is extremely inefficient.
But for our proof this is irrelevant, as we only need to show that every computable function can be represented.

91

1. We first search for the smallest prime number p that is larger than all the yi

2. We then represent y0, y1, . . . , yk by the number σ ≡ y0*+ y1*p+ . . . + y
k
*pk

3. To make sure that σ can be decoded again, we couple it with the prime p and
define ŷ ≡ 〈p,σ〉, where 〈〉 :N2→N is a bijective encoding of pairs of numbers,
defined by 〈i,j〉 ≡ j + (i+j)(i+j+1)/2.

4. Given ŷ and a number i we can compute the value of the element yi as follows.
We first extract p and σ by using the inverses of 〈〉, which can be expressed as
– 〈z〉1 ≡ min{ i | (∃j)(j≤z ∧ 〈i, j〉=z)} and
– 〈z〉2 ≡ min{ j | (∃i)(i≤z ∧ 〈i, j〉=z)}.
We then divide ŷ by pi+1 to isolate the elements from i upwards and compute the
remainder of dividing the result by p again to get the smallest of these elements.
Let us call the result of this computation ŷ?i.

To determine the sequence we need, we then have to search for the smallest number
z that encodes a sequence and satisfies the recursive equations. We can then select
z?k to get the final result of the computation. Altogether we get

pr(f, g)(x1, ..xn, k)
= min{ z | f(x1, ..xn)=z?0 ∧ (∀i)(i≤k ⊃ g(x1, ..xn, i, z?i)=z?(i+1))} ? k

The above expression can be expressed in terms of addition, multiplication, mini-
mization, composition, projections, and constants. To prove this, we only have to
show how to express a primality test, summation of polynomials, exponentiation,
division, quotient remainder, the operation ŷ?i, and limited quantification using only
these constructs. Since all of these are are already shown to be representable in Peano
Arithmetic, primitive recursion can be represented in Peano Arithmetic as well. ¤

92

