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Abstract

In online graph coloring, a graph is revealed to an online algorithm one
vertex at a time, and the algorithm must color the vertices as they appear.
This paper investigates the advice complexity of this problem — the amount
of oracle information an online algorithm needs in order to make optimal
choices. We formally define a classification of online graph coloring variants
and use advice complexity to analyze and compare the difficulty of solving
them. In the paper we obtain tight bounds for general graphs (under various
vertex presentation orders) and also for some of the simplest graph classes:
paths, cycles, and spider graphs.
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1. Overview of advice complexity

A great challenge in classical algorithmics are problems that work in
an online fashion: The instance is not shown to the algorithm all at once.
Instead, the algorithm receives it piecewise in consecutive turns. In each
turn, the algorithm must produce a piece of the output which must not be
changed afterwards. Such algorithms are called online algorithms, more on
them can be found for example in [2].

Obviously, it is harder (and sometimes even impossible) to compute the
best partial solutions without knowing the future. The output quality of
online algorithms is measured by the competitive ratio of a particular al-
gorithm. For a given instance, the ratio is the quotient of the cost of the
solution produced by the given online algorithm and the cost of an optimal
solution (i.e., the cost of the output of an optimal offline algorithm for that
particular instance). We are usually interested in the worst competitive ratio
over all instances. For randomized online algorithms we consider the ezxpected
competitive ratio. See [2, 3] for more details.

The exact advantage of the offline algorithm can be measured as the
amount of additional information, “advice”, the online algorithm needs in
order to produce an optimal solution. This notion can be formalized by
providing the online algorithm with an additional source of information: an
advice tape. The online algorithm may access this tape at any time and use
its contents as additional information for computing the partial solutions.
The content of the advice tape is assumed to be prepared in advance by an
oracle which has unlimited computational power and has access to the whole

input instance.



This model of advice complexity has first been introduced in [4]. The
original model had a technical disadvantage: the advice tape was finite, hence
its length could have been used to encode additional information. There were
two attempts to fix this. In [5], the authors force the algorithm to use a fixed
number of advice bits in every turn. A drawback of this approach is that
it is not possible to determine sublinear advice complexity, or investigate
situations in which the need for advice is not uniform. A better version of
the model was proposed in [6]. In that version, the advice tape is considered
to be infinite, and the amount of advice used is defined as the length of its
prefix that is actually examined by the online algorithm. We are using this
model in our paper. In Section 3 we give a brief summary of the formal
definitions.

There are indeed problems where already a small amount of information
is enough for an online algorithm to be optimal. For example, in the simplest
online problem SkiRental we need just a single bit of advice in order to solve
it optimally [4]. In recent years, advice complexity was also investigated
for other classical online problems, such as the k-server problem [7] and the
paging problem [8].

Advice complexity has its theoretical importance in measuring an exact
quantity of information that directly characterizes the hardness of an online
problem compared to its offline version. This can bring new insights even into
well-researched topics. For instance, in the paging problem it is well known
that online algorithms perform well in practice, but on the other hand, the
worst-case competive ratio for any deterministic online algorithm for Paging

is k, where k is the cache size. (L.e., for any deterministic online algorithm



there is an instance such that the optimal offline algorithm produces £ times
less page faults.) This dichotomy can be explained by an insight gained from
advice complexity. For an instance with n page requests, one needs nlgk

bits to encode a particular optimal solution. However, in [6] it is shown that:
e With 2 advice bits we can guarantee a competitive ratio of k/2+ O(1).

e O(log k) advice bits are enough to guarantee a competitive ratio O(log k),

which is asymptotically equal to optimal randomized algorithms.
o Asfew as n+k advice bits are sufficient to produce an optimal solution.

These results show that the amount of information lost in transition from
the offline to the online version of this problem is significantly lower than
expected — in other words, even before the first request, the online solver
already has to have a lot of information about the set of all optimal solutions.

It is also worth noting that advice complexity is closely related to both
non-determinism (in terms of the oracle) and randomization. In [9], relations
between advice complexity and randomized algorithms are shown, and a
new randomized algorithm is designed based on a careful computation of the
advice complexity of a given problem. This makes advice complexity a new

and important point of view on online algorithms.

Advice complezity of graph coloring

A preliminary version of this paper [1] (with just the results for paths)
was presented at LATA 2012 as the first published paper dealing with the

advice complexity of graph coloring.



Bianchi et al. [10] address online coloring of bipartite graphs (using an
arbitrary presentation order, see Section 2 of this paper). As one of their
results, the authors analyze the advice complexity of this problem, showing
that the advice complexity of constructing an optimal solution is either n — 2
or n — 3 bits. Furthermore, there is a trade-off between the amount of advice
and the quality of the solution: for any given integer k > 2, having n/ V/2k-1
advice bits is sufficient to guarantee that the online algorithm with advice
will produce a valid coloring that uses at most k colors (and therefore has a

competitive ratio k/2).

2. Online graph coloring

The term “online graph coloring” actually denotes a huge class of compu-
tational problems. The general offline version of this problem is a well-known
NP-complete problem, as are many of its simpler variants. All online algo-
rithms without advice are known to be extremely poor in the worst case [11].
This makes this problem very interesting from the advice complexity point
of view. The primary goal of this paper is to classify some of the most impor-
tant variants of online graph coloring and to analyze the advice complexity
of some of those variants.

A huge number of practical problems can be modeled as some type of
online graph coloring [12]. The computational complexity of a particular
problem depends on multiple mutually orthogonal aspects. We will now
present the most important ones.

First of all, we need to identify the class of graphs that may appear as

instances. Instead of coloring general, arbitrary graphs it may be the case



that we are guaranteed that the input graph is somehow special — e.g., planar,
sparse, bipartite, a tree, or even a path. The complexity of graph coloring
(both online and offline) is clearly influenced by this additional information.

The second aspect is the presentation order. This aspect only matters
in online coloring. In the general case we know nothing about the order in
which the vertices of the graph are presented to the online algorithm. This
does not always have to be the case in practice. And if we know something
about the presentation order, this, once again, can be seen as additional
information that may make the problem easier to solve. (And advice com-
plexity offers us a natural way of measuring the amount of this information.)
In particular, an interesting presentation order is the connected presentation
order in which each vertex after the first one is adjacent to at least one of the
previous vertices. And as special cases of this presentation order, we have
DFS and BFS order (i.e., the order in which a depth-first or a breadth-first
search would visit the vertices). Another common presentation order is one
commonly used as a heuristic in the offline setting: vertices are presented
ordered according to their degrees, starting with the largest one.

These two main aspects define a particular computational problem. In
the rest of this paper, we always specify both of them. For instance, ON-
LINECOLORING (PLANAR,BFS) denotes the problem of coloring planar graphs
with vertices presented in BFS order, and ONLINECOLORING (ANY,ANY) is
the most general version of online graph coloring.

The third aspect is the quality of the solution we need. This does

1Several other presentation orders are interesting from a theoretical or practical point

of view. Some additional examples are considered in [11].



not influence the definition of the problem, but it does influence the solution.
Exact graph coloring is hard, but sometimes in practice a good approximation
is all we need. This is captured in theory by the approximation ratio (in the
offline setting) and the competitive ratio (in the offline setting). In terms of
advice complexity, we will be looking at trade-offs between the amount of
advice available and the competitive ratio that can be guaranteed.

There are also other minor aspects worth taking into consideration. For
instance, we may care about the time complexity of the online algorithm.
In some cases there may be a trade-off between the amount of available
advice and the time complexity we are able to guarantee. In this paper we
will not pursue this line of thought any further; but we note that all online
algorithms presented in upper bound proofs in this paper have a polynomial

time complexity.

3. Notation and definitions

Whenever we consider a fixed problem, the cost of a particular solution
S will be denoted by C(S). The output of an algorithm A for an instance
I will be denoted by A(I). Hence C(A(I)) denotes the cost of the solution
that algorithm A produced for the instance I. The optimal solution for [
will be denoted by Opt(I).

The expected value of a random variable X will be denoted by E[X].

Definition 1. Consider an optimization problem in which the goal is to min-
imize the cost of a solution. An algorithm is c-competitive if there is a con-

stant o such that for each instance I we have C(A(I)) < ¢-C(Opt(I)) + a.



If « = 0, we say that A is strictly c-competitive. The competitive ratio of

A is the smallest ¢ such that A is c-competitive.

The above definition can be extended to randomized algorithms: We
require that for each instance I we must have E[C(A(I))] < ¢-C(Opt(I))+a.
Afterwards we claim that the ezpected competitive ratio of A (against an
oblivious adversary) is the smallest corresponding c.

The following definitions are rephrased from [6].

Definition 2. An online algorithm A with advice is defined as follows:
The input for the algorithm is a sequence X = (x1,...,x,) and an infi-
nite advice string ¢ € {0,1}*. The algorithm produces an output sequence
Y = (y1,...,yn) with the restriction that, for all i, y; is computed only from
x1,...,x; and p. This is denoted by A?(X) =Y.

The computation of A can be seen as a sequence of turns, where in the
i-th turn A reads z; and then produces y; using all the information read so
far and possibly some new bits of the advice string. Note that the definition
does not restrict the computational power of the online algorithms. Still, all
of the algorithms in our paper will be deterministic and they will all have a

polynomial time complexity.

Definition 3. The advice complexity of A is a function s such that s(n)
1s the smallest value such that for no input sequence of size n the algorithm
A examines more than the first s(n) bits of the advice string ¢. The advice
complexity of an online problem is the smallest advice complexity an online
algorithm with advice needs to produce an optimal solution (i.e., a solution

as good as an optimal offline algorithm would produce).
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Definition 4. An online algorithm with advice A is c-competitive if there
s a constant o such that for every n € N and for every instance I of size at

most n there is an advice string ¢ such that C(A?(1)) < c¢- C(Opt(l)) + .

Again, the above definition extends to randomized algorithms with advice
in a natural way.

When defining a particular variant of online graph coloring, we have to
specify the class of graphs and presentation order. For the class of graphs we
will use its common name (e.g., “TREE”, “PLANAR”), with the addition that
“ANY” denotes that all possible graphs are valid instances. For the presen-
tation orders defined above we will use the names “ANY”, “CONNECTED”,

“BFS”, “DFS”, and “MAX-DEGREE”.

Definition 5. In ONLINECOLORING the instance is an undirected graph G =
(V,E) withV ={1,2,...,n}. This graph is presented to an online algorithm
i turns: In the k-th turn the online algorithm receives the graph Gy =
G[{1,2,...,k}], i.e., a subgraph of G induced by the vertex set {1,2,...,k}.
As its reply, the online algorithm must return a positive integer: the color it
wants to assign to vertex k. The goal is to produce an optimal coloring of G
— the online algorithm must assign distinct integers to adjacent vertices, and

the largest integer used must be as small as possible.

Vertex labels in G correspond to the order in which the online algorithm
is asked to color the vertices. As an equivalent definition, we may assume
that in the k-th turn the online algorithm gets a list of edges between k
and vertices in {1,2,...,k —1}. In ONLINECOLORING(X,Y) we have the
additional information that G belongs to the class X and the presentation

order belongs to the set Y.



Note that the value n is not known a priori by the online algorithm. This
is intentional and necessary. Announcing the value n to the online algorithm
would give it additional information about the instance it will be processing,
and this amount of information would then not be reflected in the advice

complexity.

Selected bounds for combinatorial sequences

Below we define the notation for several combinatorial sequences and
present the bounds we will be using in our estimates.

In the rest of the paper “lg” is the base-2 (binary) logarithm, and “In” is
the base-e (natural) logarithm.

Bell numbers count the number of ways a set of n distinct elements can
be partitioned into arbitrarily many nonempty subsets. They will be denoted
by B(n). De Bruijn [13] gives an asymptotic estimate for Bell numbers that
can be simplified to lg B(n) = nlgn —nlglgn + O(n).

Stirling numbers of the second kind count the number of ways a set of n

distinct elements can be partitioned into exactly & nonempty subsets. They

will be denoted by S(n, k).

Lemma 1. The value maxy(lg S(n,k)) is asymptotically equal to nlgn —
nlglgn+0O(n). The k for which1g S(n, k) is mazimized is k = n/Ilnn+0(1).

PROOF. Clearly for all n > 0, B(n) = >_;_, S(n, k). Hence there is some k
such that S(n,k) > B(n)/n, and the first claim follows trivially. In [14] it
is shown that for all sufficiently large n the k where the maximum occurs is
within 1 of ¢” — 1, where re” = n. In [13] it is shown that » = Inn —Inlnn +

O(Inlnn/Inn). From this we can easily derive that k =n/Inn+ O(1). O
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4. General graphs

In this section we consider the problems ONLINECOLORING (ANY,-) from
the point of view of their advice complexity. We show that for each of
our presentation modes the amount of advice needed to produce an optimal
solution is proportional to the size of the encoding of a particular optimal
solution. This result can be seen as an explanation why online graph coloring
is so hard — the online algorithm knows almost nothing useful about the

problem it aims to solve.

Theorem 2. The advice complexity of ONLINECOLORING (ANY,ANY) is at

most nlgn —nlglgn + O(n).

PROOF. Suppose that the instance has n vertices. The oracle producing the
advice tape will pick one optimal coloring. This coloring determines one of
the B(n) ways to partition the vertices into nonempty subsets. The advice
tape will contain n and the number of the correct partitioning in lexicographic
order. This can be done using 21gn + lg B(n) bits, which can be estimated
as nlgn —nlglgn + O(n). ]

Note that the oracle could also encode the number k. Such an encoding
would have been slightly better, as instead of lg B(n) we would have the bi-
nary logarithm of a Stirling number of the second kind. Still, the asymptotic

estimate would remain the same.

Corollary 3. The advice complezity of ONLINECOLORING(ANY,X) is at

most nlgn —nlglgn + O(n) for any presentation order X.
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Figure 1: One of the instances for n = 10, m = 6, and k = 3.

Theorem 4. The advice complezity of ONLINECOLORING (ANY,BFS) is at

least nlgn — nlglgn + O(n).

Proor. For a fixed n we will construct a set of instances B, as follows:
Let m(n) = n —n/lnn, and let k(n) be the number of subsets (i.e., colors)
for which S(m(n),k(n)) is maximized. From Lemma 1 we have k(n) =
m(n)/lg(m(n)) + O(1), hence m(n) + k(n) + 1 < n for sufficiently large n.
Below we consider a fixed n and write m and k instead of m(n) and k(n).

The set B,, will contain precisely S(m, k) instances — one for each way in
which we can partition m elements into exactly £ nonempty subsets.

Each instance has vertices 1 through m—+k+1. Vertex 1 is connected to all
vertices. The subgraph induced by vertices {2,...,m+ 1} is an independent
set. These vertices represent the elements. The subgraph induced by vertices
{m+2,...,m+k+1} is a clique. These vertices represent the subsets, in any
particular order. Each vertex in {2,...,m + 1} is connected to all vertices
in {m+2,...,m+ k+ 1} except for one — the one representing the subset

containing the particular element. A sample instance is shown in Figure 1.

12



The order in which the vertices of an instance are labeled corresponds
to one possible BFS traversal order. For any instance in B,,, each optimal
coloring uses exactly £+ 1 colors and corresponds to the chosen partitioning
of the m elements into nonempty subsets. Hence no two instances in B,
share the same optimal coloring.

For all instances in B, the subgraphs induced by vertices {1,2,...,m+1}
are identical. Hence the only source of information when coloring the vertices
2 through m+1 is the advice tape. In order to produce the optimal coloring,
the online algorithm must know the correct partitioning of those vertices.
Hence 1g S(m, k) advice bits are necessary.

Using Lemma 1 to estimate S(m, k) and the fact that lg(n —n/lnn) =
lgn + O(1), we get:

lg S(m, k) = <n — L) lgn — (n — ﬁ) lglgn + O(n)

Inn

=nlgn —nlglgn + O(n)
]

Corollary 5. The advice complezity of ONLINECOLORING(ANY,ANY) and

ONLINECOLORING (ANY,CONNECTED) is at least nlgn —nlglgn + O(n).

The results can be summarized as follows: For the presentation orders we
considered, the knowledge that a particular presentation order is used does
not contain a significant amount of information. The problem still remains

approximately as hard as in the most general setting.
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5. Paths

In this section, we present our results on advice complexity for online

coloring on paths.

Lemma 6. Let X be a class of graphs such that each graph in X is 2-
colorable. An online algorithm with advice for ONLINECOLORING(X,-) never
needs to access advice bits whenever the degree of the currently processed

vertex k in the current graph Gy, is positive.

ProoOF. If the degree of k in Gy is positive, in G the vertex a; must be
adjacent to some a; such that ¢+ < k. The online algorithm already assigned
a color to a;, and now it must use the other color for a,. This can be done

without advice. OJ

Lemma 7. There is a deterministic online algorithm solving ONLINECOLO-

RING (PATH,ANY) with advice complezity [n/2] — 1.

PROOF. As suggested by Lemma 6, our algorithm only asks for advice (i.e.,
reads the next bit of the advice string) whenever the current vertex k is
isolated in GGj. One bit of advice is sufficient — the advice can be interpreted
as the correct color to use. The above only applies for £ > 1, as we may pick
an arbitrary color for the first isolated vertex.

Let S be the set of vertices that were isolated at the moment when we
processed them. Clearly, it follows that no two of them are adjacent in G,

hence S is an independent set in G and therefore |S| < [n/2]. O

Lemma 8. Any deterministic online algorithm solving ONLINECOLORING-

(PATH,ANY) needs at least [n/2| — 1 bits of advice in the worst case.

14
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Figure 2: Example for n = 14 and x = 3: P, = {1,3,5} and Q, = {8,10,12, 14}.

PROOF. Note that the proof of the lower bound of [n/2]—1 bits is reasonably
simple; for odd n we have to use a more careful analysis to force the extra
bit.

We will denote the vertices vy, ..., v, in the order in which they appear
on the path: for all ¢ the vertices v; and v;y; are adjacent. Note that we
do not know the exact numbers of these vertices. (Each path produces two
such sequences. But in our proof we only consider sequences where v; = 1,
so different sequences (v, ...,v,) indeed correspond to different graphs G.)

Let k = [n/2]. The graph G}, will be called the prefix of an instance. We
only consider instances where the prefix consists of k isolated vertices. Out
of these instances, we pick a set of instances S with the following property:
for no two instances in S can their prefixes be colored in the same way. (Note
that each instance has exactly two valid colorings, hence the prefix of each
instance also has exactly two valid colorings — one the complement of the
other.) As for a deterministic algorithm the prefixes of instances in S are
indistinguishable, all information about their correct coloring must be given
as advice.

For any = (1 < x < |n/2]) consider the two sets of positions on the path
P,={2i-1|1<i<z}and Q,={2i|z+1<1i<|n/2|} (see Fig. 2).
Note that all vertices v; for ¢« € P, must share one color, and all vertices v;
for j € @, must share the other color. (Also note, that P, and @, are sets

of indices of vertices v; and not their labels.)
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Let I, be the set of all instances where the vertices on positions in P,UQ),
form the prefix. Formally, in these instances Vi € P, U @, : v; < k. Note
that for any such instance the prefix indeed consists of k isolated vertices.

We will now define the set S: Consider all strings w € {p}-{p,q}**. For
each such string, we include into S a single instance: Let x be the number of
‘p’s in w. We will pick the lexicographically smallest? instance from I, such
that for all vertices v; < k we have (i € P, iff the i-th letter of w is p). In
other words, the string w determines the value of x and gives the order in
which vertices from P, and @), are picked for coloring. There is always at
least one such instance; if there are multiple such instances, any will do, so
we pick the lexicographically smallest one.

In this way we constructed a set S of 2¥~! instances (S contains one
instance per each string {p} - {p,q}**) such that for no two instances in S
the prefix can be colored in the same way. By the pigeon-hole principle, if
there were a deterministic online algorithm that always uses less than k — 1
bits of advice, two of the instances would receive the same advice, hence
the algorithm would produce the same coloring of their prefixes, which is a
contradiction. Therefore any deterministic online algorithm needs at least

k —1=|n/2] — 1 bits of advice. That concludes the proof for even n.

For odd n, we want to prove by contradiction that any deterministic online
algorithm must use at least k bits of advice. Assume that the algorithm
always uses less than k bits of advice for paths of length n. This means that

on instances from S the algorithm always reads all £ — 1 bits of advice, and

2I.e., one for which the vector (vq,vs,...) is the lexicographically smallest.
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different instances in .S must correspond to different k£ — 1 bits of advice.

In S we have an instance J; that corresponds to p*. For this instance all
vertices in the prefix must receive the same color. Let ¢; be the first £ — 1
bits of advice for this instance. Consider any instance (possibly with more
than n vertices) such that Gy consists of isolated vertices that should receive
the same color as J;. Clearly, for any such instance the first £k — 1 bits of
advice must be ¢, — otherwise the deterministic algorithm would color the
first k& vertices in a different way:.

Now consider one additional instance Jy: the lexicographically smallest
one where v; < k + 1 iff 7 is odd. (This instance is similar to .J;, but in J;
we have v, = k + 1 and in J; we have v, = k+ 1. For J; the graph Gy
has k + 1 isolated vertices.) As our algorithm never uses k bits of advice, it
must process v, without any additional advice. Thus the instances J; and J,
are undistinguishable for the algorithm and the algorithm cannot use extra
bits of advice to color J;. Hence whenever our algorithm is presented with
an instance (of any size) such that the first k& vertices are isolated and must
share the same color, it will color the next isolated vertex using the same
color. And this is a contradiction: we can easily create an instance of size

n+ 1 where the (k+ 1)-st isolated vertex should have the opposite color. [

Theorem 9. The advice complexity of ONLINECOLORING (PATH,ANY) is ex-

actly [n/2] — 1 bits.
Proor. Follows immediately from Lemma 7 and Lemma 8. O]

Theorem 10. The advice complezity of ONLINECOLORING (PATH,CONNECTED)

18 Zero.

17



Proor. Follows trivially from Lemma 6. O

We conclude this section with a consideration of a special presentation
order that lies somewhere between the two orders considered above. The
problem considered below can also be seen from a different angle — not as a
special case of a presentation order, but as a special case of a partially online
problem.?

In this presentation order, denoted by 2PASS, the path is traversed twice
from one end to the other, and each vertex is processed online during one
of the passes. Of course, by Lemma 6 no advice is necessary in the second
pass. Hence the alternate interpretation mentioned above — an equivalent
statement would be that some of the vertices are processed online in the
first pass, and the rest is processed offline, all at once. (These two points of
view are only equivalent for paths, for more complicated graph classes their

generalizations will differ.)

Theorem 11. The advice complezity of ONLINECOLORING (PATH,2PASS) is
Bn+0(logn), where B = 0.4057 is the binary logarithm of the plastic constant

(i.e., of the only real root of the polynomial 23 —x —1).

PROOF. We gave a detailed proof in [1]. As this result lies slightly beyond

3In partially online problems only a part of an instance is processed online, the rest
is then processed offline (as if all remaining requests appeared at the same time). One
practical motivation are situations with a fixed deadline. As an example, note that most
authors submit camera ready copies of conference papers only on the day of the deadline.
Processing them to produce the conference proceedings can be seen as an example of a

partially online version of a lot sizing problem.
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the scope of this paper, we opted to just present an outline of the proof here,
and refer an interested reader to [1].

For the lower bound we identify a large set of instances that cannot be
distinguished by the online algorithm and require pairwise distinct colorings.
This set of instances is defined by two parameters k and [ and contains all

instances in which:

e the first vertex of the path is processed in the first pass,
e every other vertex processed in the first pass lies in distance 2 or 3 from
the previous one, and

e there are k steps of length 2 and [ steps of length 3.

For an n-vertex path, taking k =1 = |(n — 1)/5] gives us the lower bound
of 0.4n advice bits. However, we computed that the optimal choice of k£ and
[ is slightly asymmetric, yielding the lower bound of fn —lgn + O(1) advice
bits.

For the upper bound we show how to map any instance to one of the
instances of the type described in the lower bound, and then use its lex-
icographic index as advice. In this way we obtain the upper bound of

pn+2lgn+1glgn + O(1). O

6. Cycles

In this section, we consider the advice complexity of online coloring for
cycles. Cycles with an even number of vertices can be optimally colored
using 2 colors and cycles with an odd number of vertices using 3 colors.
In the following, we will call these two cycle types “even cycles” and “odd

cycles”.
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Lemma 12. There is a deterministic online algorithm that solves the problem

ONLINECOLORING (ODD-CYCLE,ANY) without using advice.

PROOF. A greedy strategy works. As we are allowed to use three colors and
each vertex has at most 2 neighbors, we always have at least one color we

may use. 0

Lemma 13. There is a deterministic online algorithm solving ONLINECO-

LORING(CYCLE,ANY) with advice complezity |n/2] — 1.

Proor. We will use the following greedy algorithm: Color the first vertex
arbitrarily. In the rest of the instance, whenever you are shown an isolated
vertex, use an advice bit to color it 1 or 2. Whenever you are shown a vertex
that is not isolated, use the smallest available color (1, 2, or 3).

In an instance that is a cycle with n vertices there can be at most [n/2]
isolated vertices, hence this algorithm always uses at most [n/2] — 1 advice
bits. It is easily verified that for any instance there is an advice string such
that the algorithm produces an optimal coloring — using two colors for even
n, three for odd n. (For even n there is one such advice string — the correct

coloring. For odd n all possible advice strings work.) ]

Corollary 14. There is a deterministic online algorithm solving ONLINECO-

LORING (EVEN-CYCLE,ANY) with advice complexity n/2 — 1.

Lemma 15. Any deterministic online algorithm solving the problem ON-
LINECOLORING (EVEN-CYCLE,ANY) needs at least n/2 — 1 bits of advice in

the worst case.
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PrOOF. Observe that optimal colorings for paths and even cycles look almost
the same — they use two alternating colors. We will use this fact to show that
any algorithm solving ONLINECOLORING (EVEN-CYCLE,ANY) can be used to
solve ONLINECOLORING (PATH,ANY).

Assume that there exists a deterministic online algorithm As with advice,
solving ONLINECOLORING (EVEN-CYCLE,ANY) with advice complexity f(n).
We will use A¢ as a subroutine to define a deterministic online algorithm Ap
with advice, solving ONLINECOLORING (PATH,ANY) with the same advice
complexity f(n).

Suppose that Ap is given a path on m vertices. Let n = m if m is even,
and n = m + 1 if m is odd. The algorithm Ap will interpret all incoming
isolated vertices as vertices on a cycle with n vertices, and process them by
calling Ac. The remaining vertices can be handled directly by Ap (using
Lemma 6).

Clearly any valid coloring of the path corresponds to a valid coloring of
the cycle and vice versa. So the coloring A constructs for the cycle directly
maps to a valid coloring of the path. Note that Ap does not know m and
Ac does not know n. The algorithm Ap never actually computes n, it just
checks each vertex for adjacency to the previously processed vertices.

As Ap does not use any additional advice bits, the advice complexity of
Ap for a path with m vertices is equal to the advice complexity of Ac for a
cycle with n vertices. By Lemma 8 we know that [m /2] — 1 advice bits are

necessary for a path with m vertices. Hence f(n) > [m/2]|—-1=n/2—1. O

21



Figure 3: Example of a spider graph.
7. Spider graphs

In this section, we will consider special trees where all vertices except for
one have degree at most 2. We call those graphs spider graphs (see [15]).
Figure 3 shows an example. The vertex with the degree larger than 2 is
referred to as the center of the spider and the paths from the center are

called the legs of the spider graph.

Lemma 16. Spider graphs are 2-colorable.
PROOF. Spider graphs are trees, and trees are bipartite. O

Lemma 17. There is an online algorithm without advice that can color any

spider graph using at most 3 colors.

ProoOF. The naive greedy strategy “always use the smallest available color”
has this property. Any vertex other than the center has at most two neigh-
bours, so it will surely receive a valid color. Now consider the turn ¢ when the
online algorithm processes the center c. Some neighbours of the center may
have been processed before the turn ¢. Consider any such neighbour v. At

the moment when v was processed, it had at most one processed neighbour —
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because it has at most two, and ¢ was not processed yet. Therefore v surely
received one of the colors 1 and 2. But this means that it is certainly possible

to color the center using the color 3. [

Note that from Lemma 17 it follows that for spider graphs it still does
not make much sense to consider the tradeoff between advice size and the
competitive ratio of the online algorithm. For spider graphs, a ratio 3/2
can be achieved without advice, and we are only able to guarantee a better

competive ratio by solving the problem optimally.

Definition 8. A spider graph is called a 1-2-spider graph if each leg consists
of at most two vertices. A 1-2-spider graph is partially labeled if the vertices
at the ends of its legs are labeled 1 through ¢ (where € is the number of legs),
the center is labeled n (where n is the total number of vertices) and the other

vertices are unlabeled.

Lemma 18. For each n > 1, there are exactly F,, partially labeled 1-2-spider

graphs on n vertices, where F,, is the n-th Fibonacci number.

PROOF. Let v(n) be the number of partially labeled 1-2-spider graphs with
n vertices. If n = 1, the spider graph consists of just the center, and there
is exactly one such spider graph. If n = 2, the spider graph consists of just
the center and one vertex, and there is exactly one such spider graph. For
n > 2, vertex 1 is either the end of a length-2 leg, or of a length-1 leg. By
removing the leg containing the vertex 1 and decreasing all labels, we get
some partially labeled 1-2-spider graph on either n — 2 or n — 1 vertices.
This is clearly a bijection between all our spider graphs on n vertices

and all our spider graphs on (n — 1 and n — 2) vertices. Hence the numbers
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v(n) satisfy v(1) = v(2) = 1 and for all n > 2, v(n) = v(n — 1) +v(n — 2).
Therefore obviously v(n) = F,. O

In the following text, let ¢ = %5 be the golden ratio. It is well-known
that Fj, = (¢" — (—¢)™")/v/5. And as |¢~!| < 1, F, equals ¢"/v/5 + O(1).
(Actually, it is ¢"/+/5 rounded to the nearest integer.) Note that lg¢ ~
0.69424.

Lemma 19. There is a deterministic online algorithm solving ONLINECO-

LORING (SPIDER,ANY) with advice complexity 1g ¢ - n + 31gn + O(1).

ProOOF. The general idea of this proof is that if we only care about coloring
isolated vertices, each possible spider graph is equivalent to a partially labeled
1-2-spider graph in which the isolated vertices are precisely the endpoints of
all legs. (Multiple spider graphs will correspond to the same 1-2-spider graph,
which decreases the amount of advice we need.)

The advice string for our algorithm will consist of three parts. The first
part will be the number of vertices n. For this we use 2lgn bits of advice
(Ign for the unary representation of n’s length and another lgn bits for the
actual value of n).

The second part will be the label of the center vertex, i.e., the turn in
which we color the center vertex. This value is encoded in lgn bits (as the
online algorithm already knows n). We will pick a coloring in which the
center vertex has color 2.

According to Lemma 6, the only interesting vertices where the online
algorithm needs advice are the vertices that are isolated at the moment when

we are requested to color them. We will call them “special vertices” for short.
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Figure 4: Deconstructing a spider graph. Black vertices have color 1, white have color 2.

Each arrow points from a possible vertex v to the corresponding vertex wu.

(The center vertex is never considered to be special, as we already know its
color.) The third part of the advice string will be used to encode the correct
coloring of all special vertices. However, we will not do it in the naive way
that needs one bit per vertex.

Consider any special vertex v, and let u be the neighbor of v that is closer
to the center. Note that u is never a special vertex. The vertex u may be
the center vertex if and only if the correct color of v is 1. Hence if v; and vy
are two special vertices with correct color 2, their corresponding neighbours
uy and uy are always distinct. This is shown in Figure 4.

The oracle will take the instance I and transform it into a corresponding
partially labeled 1-2-spider graph I’. To do this, we process all vertices of
I in the order in which the online algorithm will see them. Whenever we
encounter a special vertex that should receive the color 2, we will add a leg
of length 2 to I’, and whenever we encounter a special vertex that should
receive the color 1, we will add a leg of length 1. The end vertices of legs in
I’ are labeled in the order in which they were added.

According to the above observation, the resulting instance I’ will never
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have more than n vertices. If it has less, we add additional legs of length
1 until the number of vertices is correct. We will take the instance I’ and
transmit it to the online algorithm using advice. (To transmit I’ we use the
usual trick: all possible instances can be numbered in lexicographic order.)
The online algorithm can decode the instance I’, find its correct coloring,
and then use that coloring to color the special vertices in its actual instance.

By Lemma 18, there are F), possible instances I’, hence we need lg F),
bits to describe any of them to the online algorithm. This gives us a total of

3lgn+1gF, =lg¢-n+3lgn+ O(1) bits of advice. O

Note that the statement of Lemma 19 can be slightly improved by using
a better encoding to transmit the value of n, for instance by using the Elias

Delta code [16].

9. Conclusion

In this paper we barely scratched the surface of the analysis of online
graph coloring in terms of its advice complexity. We strongly believe that
once there is a significant progress in this direction, useful patterns will
emerge. For instance, we are convinced that it should be possible to find
and describe some relation between the advice complexity of particular vari-
ants, the competive ratio we can obtain in the online setting, and the ap-
proximation ratio we can obtain in polynomial time in the offline setting.
However, we are still far away from this goal, much more research in this
new interesting area is necessary before we can aim for such results.

Another open line of research is a more fine-grained analysis. In this

paper, we only focused on solving the particular online problems optimally.
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However, as we already outlined in our classification, for all sufficiently com-
plex graph classes it also makes sense to investigate the trade-off between the
amount of advice available and the quality of the competitive ratio we are
able to guarantee (or, with a randomized algorithm, obtain in expectation).
This more detailed analysis may then also lead to new, interesting offline

approximation algorithms.
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